

FM IF IC FOR PAGERS

GENERAL DESCRIPTION

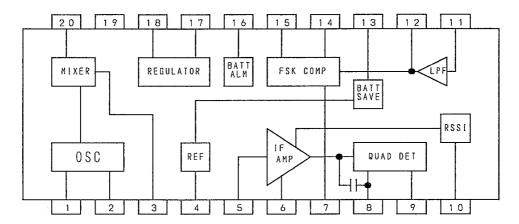
THE NJM2537 is a low power FM IF IC for pagers. It is capable of designing dual conversion pager system because of including a mixer circuit. Also it includes RSSI function, so that it is easy to design automatic gain control (AGC) which improves interberence when strong signal is received.

PACKAGE OUTLINE

NJM2537V

■ FEATURES

- Low Operating Voltage
- Low Operating Current
- RF Input Frequency
- 2nd Mixer
- Package Outline


1.1~4.0V

1. 2mA typ. at V+=1.4V

10~50MHz

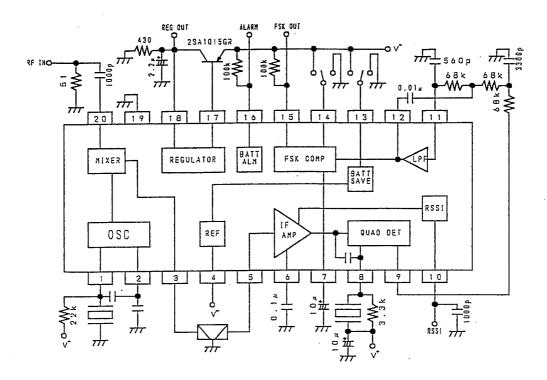
SS0P20

PIN FUNCTION AND BLOCK DIAGRAM

- 1. OSC IN
- 2. OSC OUT
- 3. MIXER OUT
- 4. V+
- 5. IF IN
- 6. DECOUPLING
- 7. FSK REF
- 8. QUAD IN
- 9. AF OUT
- 10. RSSI

- 11. LPF IN
- 12. LPF OUT
- 13. BS
- 14. CHARGE
- 15. FSK OUT
- 16. VALM
- 17. REG CONT
- 18. REG OUT
- 19. GND
- 20. MIXER IN

MAXIMUM ABSOLUTE RATING


(Ta=25°C)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	Vcc	4. 0	٧
Power Dissipation	P _D .	300	mW
Operating Temperature Range Storange Temperature Range	Topr Tstg	-30∼+85 -40∼+125	°C ℃

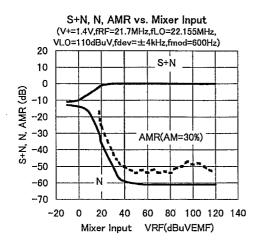
■ ELEGTRICAL CHARACTERISTICS (V+=1.4V, fc=21.7MHz, f1F=455kHz, fmod=600Hz, fdev=±4kHz, Ta=25°C)

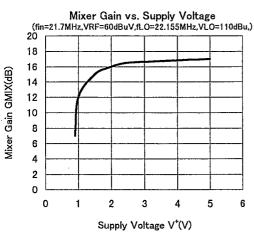
PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
No Signal Operating Current	locq		_	1.2	1.5	mA
Battery Saving	lccs			0	5	μА
Operating Current		•				
Mixer Gain	GMIX	After Ceramic Filter	11	14.5	18	dB
Mixer Intercept Point	IP		-	103		dB μ VEMF
Mixer Input Resistance	RinMIX		-	5	-	kΩ
Mixer Output Resistance	RoMIX		-	2	-	kΩ
IF Amplifier Input Resistance	RinlF		-	2	-	kΩ
S/N 1	S/N1	MIXER Input, Vi=60dB μ VEMF	-	63	-	dB
S/N 2	S/N2	IF Input, Vi=60dB μ VEMF	-	63	_	d₿
S/N 3	S/N3	IF Input, Vi=22dB μ VEMF	-	25	-	dB
-3dB Limiting Sensitivity 1	LIM1	MIXER Input	-	12	17	dB μ VEMF
-3dB Limiting Sensitivity 2	LIM2	IF Input	-	22	27	dB μ VEM
Demodulated Output Level	Vod	IF Input, Vi=60dB μ VEMF	30	46	65	mVrms
AM Rejection Ratio	AMR	IF Input,Vi=60dBμVEMF, AM=30%	-	50	- .	dB
Duty Ratio at Wave	DR	IF Input, Vi=60dB μ VEMF	40	50	60	%
Shaped Output	1					l
RSSI Output Voltage	Vrssi	IF Input, Vi=65dB μ VEMF	0.48	0. 62	0.76	ν
RSSI Output Resistance	Rrssi		-	62		kΩ
Quick Charge/	Ich	GND, 0. 18V	40	70	115	μΑ
Discharge Current			1		ļ	
Alarm Detection Voltage	Valm		1.05	1.10	1.15	V
Regulator Output Voltage	Vreg	RL=430 Ω	0.95	1.00	1.05	V
Low Level Output Voltage	ValmL	IL=100 μ A	-	0.1	0.4	V .
of VALM Terminal				1	1	
High Level Leak Current	lalmH		-	0	2	μΑ
of VALM Terminal				1		1
Low Level Output Voltage	VfskL	IL=100 μ A	_	0.1	0.4	V
of FSK-OUT Terminal	1					
High Level Leak Current	lfskH	1	-	0	2	μΑ
of FSK-OUT Terminal					1	
Low Level Output Voltage of REG-OUT Terminal	VregL	IL=100 μ A	-	-	0.6	V

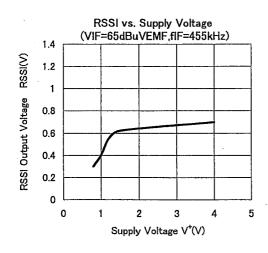
APPLICATION CIRCUIT

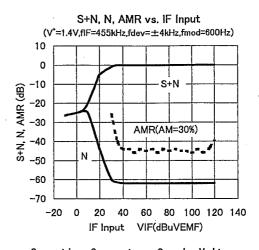
■ TERMINAL FUNCTION

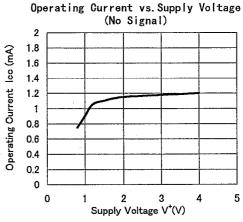
PIN NO.	SYMBOL	PIN VOLTAGE (V)	FUNCTION	EQUIVALENT CIRCUIT
1	OSC IN .	1.38	Local Oscillator Input. In case of using a crys- tal oscillator, it is connected.	O T
2	OSC OUT	0. 68	Local Oscillator Output. In case of using an ex- ternal oscillator, the external clock is input.	②
20	MIX IN	0. 8	Mixer input. Input resistance is $5k\Omega$ typical.	
3	MIX OUT	0. 7	Mixer output. Output resistance is 2k@ typical.), sk 3
5	IF IN	1. 38	Limiter amplifier input. Input resistance is $2k\Omega$ typical.	V• \$51K \$\$ 1K \$\$
6	DEC	1.38	Decoupling for bias.	©
8	QUAD IN	1.4	Input of quadrature detection circuit. A ceramic discriminator is connected.	20 p 200 400 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
9	AF OUT	0. 16	Demodulated signal out-put.	₹ 13 × 177

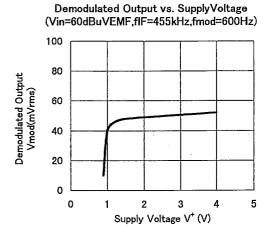

■ TERMINAL FUNCTION

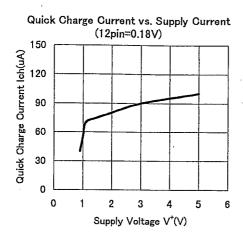

PIN NO.	SYMBOL	PIN VOLTAGE(V)	FUNCTION	EQUIVALENT CIRCUIT
10	RSSI	0	RSSI output.	000 mm
11	LPF IN	O. 18	Input of a low pass fil- ter. It is biased from AF-OUT(9pin) through an external RC filter.	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
12	LPF OUT	0. 18	Output of a low pass filter.	v. \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
7	FSK REF	0. 18	Reference input of a wave shaping comparator. An external capacitor is connected.	
13	BS		Control of a battery saving circuit. Hi:active Lo:suspended	(3) 26K 7777
14	CHARGE	_	Control of a quick charge/discharge circuit Hi:lts circuit turns ON Lo:lts circuit turns OFF	(4) - 300K 717
15	FSK OUT	_	Output of a wave shaping circuit. The output signal is inverted against LPF output signal.	(5) 300

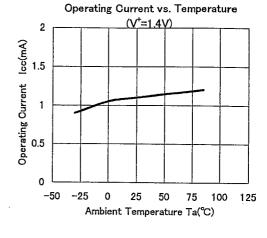

■ TERMINAL FUNCTION

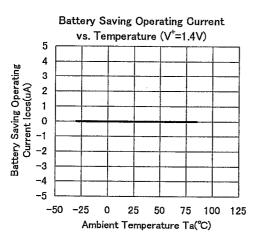

PIN NO.	SYMBOL	PIN VOLTAGE(V)	FUNCTION	EQUIVALENT CIRCUIT
16	VALM	0. 1	Output of the alarm signal. When V ⁺ drops down to 1.1V,this output becomes high.	300
17	REG CONT	0. 6	Control of an external PNP transistor used for the regulator.	v+ 1.3 K ≥200 K (7)
18	REG OUT	1.0	Monitoring of the regu- lator.	5 p
4	V ⁺	_	Power Supply.	
19	GND		Ground	_

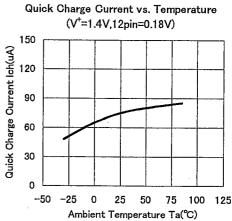

TYPICAL CHARACTERISTICS

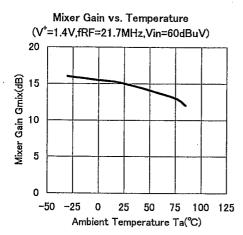


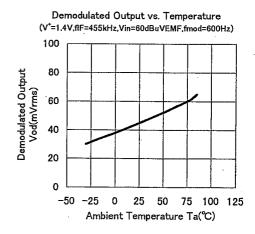


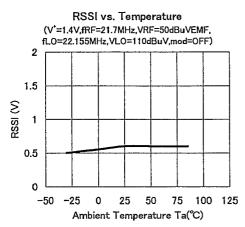


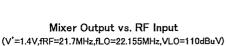


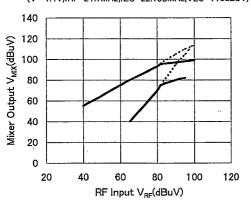


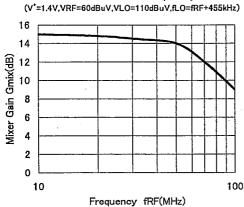

TYPICAL CHARACTERISTICS

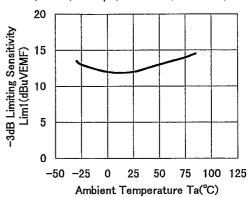


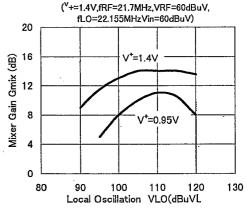


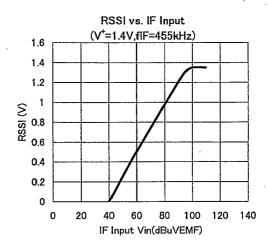





TYPICAL CHARACTERISTICS




Mixer Gain vs. Frequency



-3dB Limiting Sensitivity vs. Temperature (V=1.4V,Mixer input,fRF=21.7MHz,fmod=600Hz)

Mixer Gain vs. Local Oscillation

MEMO

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.